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Abstract
In this paper, we consider the higher-order linear and nonlinear effects in
optics and analyse a coupled system of higher-order nonlinear Schrödinger
equations to identify the conditions for dark-soliton propagation through
Painlevé analysis, to supplement the known bright-soliton conditions. We also
construct the explicit Lax pair and the Hirota bilinear form is used to generate
one and two dark solitons.

PACS numbers: 42.65.Tg, 02.30.Ik, 42.81.Dp

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Hasegawa and Tappert [1] predicted an ingenious method for obtaining a bit rate of gigabits s−1

in nonlinear optical fibres by employing the concept of solitons that was known to be appropriate
for many other nonlinear systems. Optical solitons occur as a result of exact balance between
the linear effect, i.e., the second-order dispersion which broadens the pulse, and the nonlinear
effect, i.e., the Kerr effect which contracts the pulse. This kind of lossless solitary-wave
propagation happens in the anomalous dispersion regime, while there are solitons of another
kind, known as dark solitons [2], in the normal dispersion regime. They appear as an intensity
dip in the constant background. These bright- and dark-soliton systems are both governed by
the nonlinear Schrödinger equation (NLSE), which is one of the most well-known completely
integrable systems in soliton theory, with only a sign change in the group velocity dispersion
parameter. In this model, the interaction of the two polarizations involved in the soliton wave is
ignored; this nonlinear interaction arises as a result of the tensor nature of the χ(3)-nonlinearity.
However, in order to increase the bit rate and achieve wavelength-division multiplexing (WDM)
that is utilized to transmit along more channels, or pulse propagation in birefringent fibres,
one has to consider coupled systems. Solitary-wave analyses of such coupled systems in
both isotropic and birefringent fibres are plentiful in the literature [3–7]. In 1974, Manakov
proposed a coupled version of the NLSE (CNLSE) by considering the left- and right-polarized
modes of the propagating electromagnetic wave in the following form [4]:
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iq1t ± 1
2q1xx + (|q1|2 + |q2|2)q1 = 0

iq2t ± 1
2q2xx + (|q1|2 + |q2|2)q2 = 0

(1)

where q is the complex amplitude of the pulse envelope, x and t represent the spatial and
temporal coordinates and the + or − signs before the dispersive terms denote the anomalous
and normal dispersive regimes respectively. In the anomalous dispersive regime, this system
possesses a bright-soliton solution and in the normal dispersive regime it possesses a dark-
soliton solution. Recently, the N -soliton solutions for the above cases have been reported and
also the inelastic collision of bright solitons has been analysed [8].

From extensive experimental work pioneered by Mollenauer et al [9], it was realized that in
the picosecond range, the propagation of optical pulses is affected by higher-order effects such
as third-order dispersion (TOD), self-steepening (SS) and stimulated Raman scattering (SRS)
and hence these are included in the analysis of soliton propagation and the governing equation
is the higher-order nonlinear Schrödinger equation (HNLSE) [10,11]. Tasgal and Potasek [12]
have analysed the coupled version of the Hirota equation which includes TOD and SS. In a
similar manner, we have proposed an integrable version of the coupled higher-order nonlinear
Schrödinger equation (CHNLSE) that admits bright-soliton propagation by including TOD,
SS and SRS [13, 14]. Recently, a complete Painlevé analysis of the CHNLSE system has
been carried out by Sakovich and Tsuchida [15], who identified some new integrable cases in
addition to the already known cases. Here, it should be mentioned that Mihalache et al [16] have
predicted that Painlevé analysis of the HNLSE could be extended to the dark-soliton case too.

It is well known that the effect of TOD is a splitting of higher-order solitons and that SS
gives the pulse a very narrow width in the course of the propagation, because of which the
peak of the pulse will travel slower than the wings. The inelastic Raman scattering is due
to the delayed response of the medium which forces the pulse to undergo a frequency shift
which is known as the self-frequency shift. However, analyses of dark solitons in coupled
systems are scarce, even though in certain regards, such as inherent stability and reduction
of jitter, dark solitons are preferred to bright solitons [17]. In a previous paper, we analysed
dark-soliton propagation in the coupled Hirota system [18] which excludes SRS. We have
generated one-dark-soliton and two-dark-soliton solutions by means of Hirota’s bilinear form.
For this system, Park and Shin [19] have constructed the Bäcklund transformation and analysed
the dark–dark, bright–dark and bright–bright pairs of solutions. Here, it should be mentioned
that Radhakrishnan and Lakshmanan [20] have analysed dark-soliton propagation in another
coupled higher-order system which is known as the extended NLSE system. However, this
system is not integrable from the point of view of Painlevé analysis [21]. By including the
important effect of SRS, which is responsible for the self-frequency shift, in this paper, we
have attempted to study the dark solitons in the CHNLSE system. We have not included the
effect of group velocity mismatch between two coupled waves, which gives rise to the walking
solitons studied extensively by Mihalache and co-workers [22].

First, we provide a common Lax pair for both the bright- and dark-soliton versions of the
coupled NLSE system. As the bright- and dark-soliton cases for this system are well known,
we proceed to the case of the CHNLSE. Through Painlevé analysis, we identify the integrable
version of the CHNLSE for dark-soliton propagation. We explicitly construct the Lax pair for
this particular system and the one-dark-soliton and two-dark-soliton solutions are generated
by means of Hirota’s bilinear form.

2. The Lax pair for dark solitons in the CNLSE system

The complete integrability of a nonlinear system is ensured by the Lax pair and one can obtain
N -soliton solutions by means of the inverse scattering transform method once the Lax pair is



Propagation of dark solitons in a system of coupled higher-order nonlinear Schrödinger equations 3101

known. In this paper, we follow the AKNS formalism [23] to obtain the Lax pair. The linear
eigenvalue problem for optical solitons in the CNLSE system can be constructed as follows:

�x = U�

�t = V� where � = (�1�2�3)
T.

(2)

Here, the Lax operators U and V are given in the form

U =
(−iλ/2 −µq1 −µq2

µq∗
1 iλ/2 0

µq∗
2 0 iλ/2

)

V = λ2

(−iµ̄/2µ 0 0
0 iµ̄/2µ 0
0 0 iµ̄/2µ

)
+ λ

( 0 −µ̄q1 −µ̄q2

−µ̄q∗
1 0 0

−µ̄q∗
2 0 0

)

+


 iµµ̄(|q1|2 + |q2|2) −iµ̄q1x −iµ̄q2x

iµ̄q∗
1x iµµ̄(|q1|2 + |q2|2) 0

iµ̄q∗
2x 0 iµµ̄(|q1|2 + |q2|2)




(3)

whereλ is the eigenvalue parameter andµ and µ̄ are constants whose choices make the resultant
equation either that for bright solitons or that for dark solitons as shown below.

Case 1. µ = µ̄ = 1. For this case, the compatibility condition Ut − Vx + [U,V ] = 0 gives
the NLSE for bright solitons, in the form

iq1t + q1xx + 2(|q1|2 + |q2|2)q1 = 0
iq2t + q2xx + 2(|q1|2 + |q2|2)q2 = 0.

(4)

Case 2. µ = i and µ̄ = −i. For this case, the compatibility condition gives the NLSE for
dark solitons:

iq1t − q1xx + 2(|q1|2 + |q2|2)q1 = 0
iq2t − q2xx + 2(|q1|2 + |q2|2)q2 = 0.

(5)

Recently, Park and Shin [24] have considered the Bäcklund transformation and generated
the soliton solutions of equation (5).

3. Coupled higher-order nonlinear Schrödinger equations

The CHNLSE in the normal dispersion region is given in the following form:

q1t = −iq1xx + 2i(|q1|2 + |q2|2)q1 + ε{q1xxx + α1(|q1|2 + |q2|2)q1x + α2q1(|q1|2 + |q2|2)x},
q2t = −iq2xx + 2i(|q1|2 + |q2|2)q2 + ε{q2xxx + α1(|q1|2 + |q2|2)q2x + α2q2(|q1|2 + |q2|2)x},

(6)

where q is the slowly varying amplitude of the pulse envelope and α1 and α2 are arbitrary
constants. In the past few years, equation (6) has been investigated in detail for bright solitons.
To the best of our knowledge, the dark-soliton solution for equation (6) has not been studied.
A common feature of all soliton-possessing systems is their integrability. We follow the
WTC procedure [25] to carry out the Painlevé analysis to identify the new integrable systems.
This procedure emphasizes that a given partial differential equation (PDE) is integrable if its
solutions are single valued for the movable-singularity manifold. Throughout this analysis,
for simplicity, we have used Kruskal’s reduced-manifold ansatz.
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In order to carry out the Painlevé analysis, let us assume q1 = a, q∗
1 = b, q2 = c and

q∗
2 = d; thus equation (6) becomes

at = −iaxx + 2i(ab + cd)a + ε{axxx + α1(ab + cd)ax + α2a(ab + cd)x},
bt = iaxx − 2i(ab + cd)b + ε{bxxx + α1(ab + cd)bx + α2b(ab + cd)x},
ct = −icxx + 2i(ab + cd)c + ε{cxxx + α1(ab + cd)cx + α2c(ab + cd)x},
dt = idxx − 2i(ab + cd)d + ε{dxxx + α1(ab + cd)dx + α2d(ab + cd)x}.

(7)

To determine the leading-order behaviour, we substitute in equation (7) a ≈ a0φ
p, b ≈

b0φ
q, c ≈ c0φ

r, d ≈ d0φ
s where p, q, r, s are negative integers and we obtain

p = q = r = s = −1 and a0b0 + c0d0 = −6/(3α1 + 2α2). (8)

To find the resonances, we make the substitutions

a = a0φ
−1 + ajφ

j−1,

b = b0φ
−1 + bjφ

j−1,

c = c0φ
−1 + cjφ

j−1,

d = d0φ
−1 + djφ

j−1.

(9)

Collecting the coefficients of φj−4 and solving for the resultant determinant, the resonances
are obtained as

j = −1, 0, 0, 0, 2, 2, 3, 4, 4, 4, 3 ± 2

√
α1 − α2

α1 + 2α2
. (10)

The resonance at j = −1 corresponds to the arbitrariness of the singular manifold and
the arbitrariness at j = 0, 0, 0 is verified from equation (8) which shows that of the four
coefficients a0, b0, c0 and d0, any three coefficients are arbitrary. From the resonance analysis,
it can be clearly seen that the resonances will be integers when α1 = 2α2. The arbitrariness at
other resonances can be checked by substituting the full Laurent series into equation (7).

From the coefficient of (φ−3, φ−3, φ−3, φ−3), it can be shown that

a1 = 2i(a0b0 + c0d0 − 1)

α1εb0
,

b1 = −2i(a0b0 + c0d0 − 1)

α1εa0
,

c1 = 2i(a0b0 + c0d0 − 1)

α1εd0
,

d1 = −2i(a0b0 + c0d0 − 1)

α1εc0
.

(11)

Similarly, from the coefficient of (φ−2, φ−2, φ−2, φ−2), we can show that three of the four
coefficients a2, b2, c2 and d2 are arbitrary, which corresponds to the resonance at j = 2, 2, 2.
From the higher powers of φ, one can show that in order to prove the existence of a sufficient
number of arbitrary functions, the values of the parameters α1 and α2 should be equal to −6 and
−3 respectively. It is interesting to note that the Painlevé analysis gives the same resonance
values for the bright-soliton case also. Thus, with just the sign changes, the integrability for
dark-soliton case is provided. Also, when α2 = 0, the system reduces to the Hirota case, for
which there exist dark solitons of similar type [18]. Hence, the Painlevé analysis suggests
that dark-soliton solutions are possible for the CHNLSE system. As the next logical step, we
proceed to establish the complete integrability properties of this system, such as the Lax pair,
Hirota’s bilinear form and soliton solutions.
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4. The Lax pair for the CHNLSE system

The linear eigenvalue problem for the CHNLSE can be presented in the following form:

�x = U�

�t = V� where � = (�1�2�3�4�5)
T.

(12)

The U - and V -matrices are found to be in the following form:

U =




−iλ/2 −k1q1 −k1r1 −k1q2 −k1r2

k1q
∗
1 iλ/2 0 0 0

k1r
∗
1 0 iλ/2 0 0

k1q
∗
2 0 0 iλ/2 0

k1r
∗
2 0 0 0 iλ/2


 (13)

and

V = λ3




iε/2 0 0 0 0

0 −iε/2 0 0 0

0 0 −iε/2 0 0

0 0 0 −iε/2 0

0 0 0 0 −iε/2




+ λ2




A2 εk1q1 εk1r1 εk1q2 εk1r2
−εk1q

∗
1 −A2 0 0 0

−εk1r
∗
1 0 −A2 0 0

−εk1q
∗
2 0 0 −A2 0

−εk1r
∗
2 0 0 0 −A2




+ λ




−iεk2
1

2∑
j=1

(|qj |2 + |rj |2) iεk1q1x

− 2iA2k1q1

iεk1r1x
− 2iA2k1r1

iεk1q2x

− 2iA2k1q2

iεk1r2x
− 2iA2k1r2

iεk1q
∗
1x + 2iA2k1q

∗
1 iεk2

1 |q1|2 iεk2
1q

∗
1 r1 iεk2

1q
∗
1q2 iεk2

1q
∗
1 r2

iεk1r
∗
1x + 2iA2k1r

∗
1 iεk2

1r
∗
1q1 iεk2

1 |r1|2 iεk2
1r

∗
1q2 iεk2

1r
∗
1 r2

iεk1q
∗
2x + 2iA2k1q

∗
2 iεk2

1q
∗
2q1 iεk2

1q
∗
2 r1 iεk2

1 |q2|2 iεk2
1q

∗
2 r2

iεk1r
∗
2x + 2iA2k1r

∗
2 iεk2

1r
∗
2q1 iεk2

1r
∗
2 r1 iεk2

1r
∗
2q2 iεk2

1 |r2|2




+



M11 M12 M13 M14 M15

M21 M22 M23 M24 M25

M31 M32 M33 M34 M35

M41 M42 M43 M44 M45

M51 M52 M53 M54 M55




where

M11 = −2A2k
2
1

2∑
j=1

(|qj |2 + |rj |2)− εk2
1

2∑
j=1

(qjq
∗
jx − qjxq

∗
j + rj r

∗
jx − rjxr

∗
j ),

M12 = −εk1q1xx + 2A2k1q1x − 2εk3
1q1

2∑
j=1

(|qj |2 + |rj |2),

M13 = −εk1r1xx + 2A2k1r1x − 2εk3
1r1

2∑
j=1

(|qj |2 + |rj |2),
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M14 = −εk1q2xx + 2A2k1q2x − 2εk3
1q2

2∑
j=1

(|qj |2 + |rj |2),

M15 = −εk1r2xx + 2A2k1r2x − 2εk3
1r2

2∑
j=1

(|qj |2 + |rj |2),

M21 = εk1q
∗
1xx + 2A2q

∗
1x + 2εk3

1q
∗
1

2∑
j=1

(|qj |2 + |rj |2),

M22 = −εk2
1(q

∗
1q1x − q∗

1xq1) + 2A2k
2
1q

∗
1q1,

M23 = −εk2
1(q

∗
1 r1x − q∗

1xr1) + 2A2k
2
1q

∗
1 r1,

M24 = −εk2
1(q

∗
1q2x − q∗

1xq2) + 2A2k
2
1q

∗
1q2,

M25 = −εk2
1(q

∗
1 r2x − q∗

1xr2) + 2A2k
2
1q

∗
1 r2,

M31 = εk1r
∗
1xx + 2A2r

∗
1x + 2εk3

1r
∗
1

2∑
j=1

(|qj |2 + |rj |2),

M32 = −εk2
1(r

∗
1q1x − r∗

1xq1) + 2A2k
2
1r

∗
1q1,

M33 = −εk2
1(r

∗
1 r1x − r∗

1xr1) + 2A2k
2
1r

∗
1 r1,

M34 = −εk2
1(r

∗
1q2x − r∗

1xq2) + 2A2k
2
1r

∗
1q2,

M35 = −εk2
1(r

∗
1 r2x − r∗

1xr2) + 2A2k
2
1r

∗
1 r2,

M41 = εk1q
∗
2xx + 2A2k1q

∗
2x + 2εk3

1q
∗
2

2∑
j=1

(|qj |2 + |rj |2),

M42 = −εk2
1(q

∗
2q1x − q∗

2xq1) + 2A2k1q
∗
2q1,

M43 = −εk2
1(q

∗
2 r1x − q∗

2xr1) + 2A2k
2
1q

∗
2 r1,

M44 = −εk2
1(q

∗
2q2x − q∗

2xq2) + 2A2k
2
1q

∗
2q2,

M45 = −εk2
1(q

∗
2 r2x − q∗

2xr2) + 2A2k
2
1q

∗
2 r2,

M51 = εk1r
∗
2xx + 2A2k1r

∗
2x + 2εk3

1r
∗
2

2∑
j=1

(|qj |2 + |rj |2),

M52 = −εk2
1(r

∗
2q1x − r∗

2xq1) + 2A2k1r
∗
2q1,

M53 = −εk2
1(r

∗
2 r1x − r∗

2xr1) + 2A2k
2
1r

∗
2 r1,

M54 = −εk2
1(r

∗
2q2x − r∗

2xq2) + 2A2k
2
1r

∗
2q2,

M55 = −εk2
1(r

∗
2 r2x − r∗

2xr2) + 2A2k
2
1r

∗
2 r2,

with

r1 = ei�q∗
1 , r2 = ei�q∗

2 and �(x, t) = 2
3 (x + 2

9 t).

Here, k1 and A2 are constants; suitable choice of their values gives either the bright- or
dark-soliton version of the CHNLSE system. The compatibility conditionUt−Vx+[U,V ] = 0
gives rise to the following CHNLSEs:

k1q1t + 2A2k1q1xx + 4k3
1A2(|q1|2 + |q2|2)q1

− iε[−ik1q1xxx − 6ik3
1(|q1|2 + |q2|2)q1x − 3ik3

1(|q1|2 + |q2|2)xq1] = 0,
k1q2t + 2A2k1q2xx + 4k3

1A2(|q1|2 + |q2|2)q2

− iε[−ik1q2xxx − 6ik3
1(|q1|2 + |q2|2)q2x − 3ik3

1(|q1|2 + |q2|2)xq2] = 0.

(14)
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It has been found that the above equations give the bright-soliton CHNLSE for the choice

k1 = 1, A2 = −i/2,

while for the choice

k1 = i, A2 = i/2,

one can obtain the dark-soliton equation.
Thus, by constructing the Lax pair for this system, we have proved the complete

integrability of the same. From this Lax pair, one can obtain the Bäcklund transformation
and generate multisoliton solutions. However, for the dark-soliton case, this method is a
very tedious process. Hence, we proceed further to obtain the one- and two-soliton solutions
by using Hirota’s bilinear technique, which is comparatively simple and straightforward, as
established in the next section.

5. Dark-soliton solutions

Hirota’s bilinear technique [26] is a novel method for generating soliton solutions and
constructing N -soliton solutions for nonlinear partial differential equations, even though it
involves ad hoc assumptions for obtaining the necessary transformations to get the bilinear
form of a particular equation. In many cases, such transformations can be sought by applying
the Painlevé singularity structure analysis. In our case, it would be rather convenient to
transform the CHNLSEs into a set of complex modified KdV equations with the help of the
following transformations:

q1(x, t) = Q1(Z, T ) exp

[
i

(
Z

3ε
− T

27ε2

)]
,

q2(x, t) = Q2(Z, T ) exp

[
i

(
Z

3ε
− T

27ε2

)]
,

T = t, Z = x +
t

3ε
.

(15)

Then, equation (6) becomes

Q1T − ε[Q1ZZZ − 6(|Q1|2 + |Q2|2)Q1Z − 3Q1(|Q1|2 + |Q2|2)Z] = 0,
Q2T − ε[Q2ZZZ − 6(|Q1|2 + |Q2|2)Q2Z − 3Q2(|Q1|2 + |Q2|2)Z] = 0.

(16)

The Hirota bilinear form for the CHNLSE can be constructed by applying the transformation
for the field variables as follows:

Q1(Z, T ) = G(Z, T )

F (Z, T )
, Q2(Z, T ) = H(Z, T )

F (Z, T )
, (17)

where G(Z, T ) and H(Z, T ) are complex functions and F(Z, T ) is a real function. Using
equation (17), the decoupled bilinear forms of equation (16) are given as

(DT − εD3
Z + 3ελDZ)G · F = 0,

(DT − εD3
Z + 3ελDZ)H · F = 0,

(D2
Z − λ)F · F = −4(|G|2 + |H |2),

DZG
∗ ·G = DZH

∗ ·H = 0,

(18)

where λ is a constant to be determined and the Hirota bilinear operatorsDx andDt are defined
as

Dm
x D

n
t G(x, t) · F(x, t) =

(
∂

∂x
− ∂

∂x ′

)m(
∂

∂t
− ∂

∂t ′

)n
G(x, t)F (x ′, t ′)

∣∣∣∣
x=x ′,t=t ′

. (19)
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To get one-soliton solutions, we assume

G = g0(1 + χg1), H = h0(1 + χh1), F = 1 + χf1 (20)

where g0 and h0 are complex constants and g1, h1 and f1 are real functions. Substituting
equation (20) in (19) and collecting the coefficients of χ0, we get

λ = 4(|g0|2 + |h0|2). (21)

The coefficient of χ leads to the following equations:

(DT − εD3
Z + 3ελDZ)(1 · f1 + g1 · 1) = 0,

(DT − εD3
Z + 3ελDZ)(1 · f1 + h1 · 1) = 0,

(D2
Z − λ)(1 · f1 + f1 · 1) + 8(|g0|2 + |h0|2) = 0.

(22)

The coefficient of χ2 leads to the following equations:

(DT − εD3
Z + 3ελDZ)(g1 · f1) = 0,

(DT − εD3
Z + 3ελDZ)(h1 · f1) = 0,

(D2
Z − λ)(f1 · f1) + 4[|g0|2g2

1 + |h0|2h2
1] = 0.

(23)

Equations (22), (23) suggest that they can be solved if we assume that

g1 = h1 − f1 = − exp[ω1T + c1Z + ξ (0)1 ] (24)

where

ω1 = εc1(c
2
1 − 3λ) and c2

1 = 2λ = 8[|g0|2 + |h0|2].

Using equations (24) and (17), the one-dark-soliton solution of the cmKdV equation is obtained
as

Q1 = g0 tanh

[
1

2

{
c1

(
Z − c2

1εT

2

)
+ ξ (0)1

}]
,

Q2 = h0 tanh

[
1

2

{
c1

(
Z − c2

1εT

2

)
+ ξ (0)1

}]
.

(25)

Using the transformations (22), we can easily obtain the corresponding one-dark-soliton
solution of the CHNLSE (6). This dark-soliton solution is plotted as shown in figure 1. It can
be seen that the optical pulse retains its dark-soliton shape even in the presence of higher-order
effects, characteristic of all soliton pulses. From here, we proceed to the next step of obtaining
two-dark-soliton solutions, for which we assume

G = g0(1 + χg1 + χ2g2), H = h0(1 + χh1 + χ2h2), F = 1 + χf1 + χ2f2 (26)

where g0, h0 are complex constants and g1, g2, g3, h1, h2, h3, f1 and f2 are real functions.
The coefficient of χ0 leads to equation (21). From the coefficient of χ , we get

(DT − εD3
Z + 3ελDZ)(1 · f1 + g1 · 1) = 0,

(DT − εD3
Z + 3ελDZ)(1 · f1 + h1 · 1) = 0,

(D2
Z − λ)(1 · f1 + f1 · 1) + 8[|g0|2g1 + |h0|2h1] = 0.

(27)

To solve these equations, we assume

g1 = h1 = P1 exp[ξ1] + P2 exp[ξ2] and f1 = exp[ξ1] + exp[ξ2], (28)

where ξ1 = ω1T + c1Z + ξ (0)1 and ξ2 = ω2T + c2Z + ξ (0)2 with

ω1 = εc3
1 − 3ελc1 and ω2 = εc3

2 − 3ελc2. (29)
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Figure 1. The one-soliton solution.

The values of P1 and P2 are found to be

P1 = 4[|g0|2 + |h0|2] − c2
1

4[|g0|2 + |h0|2]
and P2 = 4[|g0|2 + |h0|2] − c2

2

4[|g0|2 + |h0|2]
. (30)

The coefficient of χ2 leads to the following equations:

(DT − εD3
Z + 3ελDZ)(1 · f2 + g1 · f1 + g2 · 1) = 0,

(DT − εD3
Z + 3ελDZ)(1 · f2 + h1 · f1 + h2 · 1) = 0,

(D2
Z − λ)(1 · f2 + f1 · f1 + f2 · 1) + 2[2|g0|2g2 + |g0|2g2

1 + 2|h0|2h2 + |h0|2h2
1] = 0.

(31)

It can be shown that the above system of equations can be satisfied if we assume

g2 = h2 = A12P1P2 exp[ξ1 + ξ2] and f2 = A12 exp[ξ1 + ξ2]. (32)

The value of A12 is found to be

A12 = (P2 − P1){−(ω2 − ω1) + ε(c2 − c1)
3 − 3ελ(c2 − c1)}

(1 − P1P2){−(ω2 + ω1) + ε(c2 + c1)3 − 3ελ(c2 + c1)} . (33)

The two-dark-soliton solution for the CHNLSE can be obtained by using the expressions
for g1, g2, h1, h2, f1 and f2. This two-dark-soliton solution is plotted as shown in figure 2,
which clearly shows that after collision, the pulses retain their shape with a slight change in
their phase. Thus, in this paper, we have reported the dark-soliton version of the CHNLSEs
and also obtained the one-dark-soliton and two-dark-soliton solutions for both equations using
the Hirota bilinear method.

6. Conclusions

In this paper, we have discussed the dark solitons of CNLSEs and CHNLSEs. Using the AKNS
formalism, we have given the Lax pair for the dark-soliton CNLSE system. Using the Painlevé
analysis, for the dark-soliton CHNLSE system, we have obtained a new choice of parameters
for the integrable case. It was found that the system admits dark-soliton propagation when
the coefficients of SS and SRS are negative, −6 and −3, to be precise. The integrability of
the above equation was also proved using the specific Lax pair. Indeed, this existence of dark
solitons in the coupled higher-order nonlinear Schrödinger equations is confirmed, as we are
able to obtain the one- and two-soliton solutions by means of Hirota’s bilinear technique.



3108 A Mahalingam and K Porsezian

Figure 2. The two-soliton solution.

From the plots, it can be clearly seen that dark solitons exist for the CHNLSE system, as
the subpicosecond optical pulses retain their dark-solitary-wave nature even in the presence
of higher-order effects like TOD, SS and SRS. In this regard, they are very similar to the
bright solitons. Moreover, the higher-order terms affect the velocity of these solitons, but
otherwise leave their shape intact. From the plot for the two-soliton solution, we conclude that
the presence of higher-order terms certainly influences the phase and velocity of dark solitons.
Yet they maintain their inelastic behaviour since, after collision, they retain their shape and
intensity with only a slight change in their phase. Hence, we conclude that dark solitons of this
kind can be used to achieve all-optical communication links and in many other applications
(switching etc), similarly to the dark solitons in other optical systems.
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